Data assimilation - filtering
All models are wrong, but some are useful.
어떤 자연 현상의 시간에 대한 변화를 다음과 같은 미분방정식으로 표현했다고 하자.
\[
\frac{du}{dt} = F(u).
\]
미분방정식을 유도할 때는, 일반적으로 아주 작은 스케일의 움직임까지 기술하기란 어려운 법이므로, 적당히 평균을 내기 마련이다. 이 과정에서 실제 현상과 모델 사이 오차가 생기게 되고, 시간이 지남에 따라 모델이 예측하는 현상과 실제 현상의 차이는 점점 커진다.
아래 동영상의 왼쪽 패널을 보면, 초기에 생긴 오차가 빠르게 퍼져 시뮬레이션이 잘 되지 않는 것을 볼 수 있다. 반면, 관측자료는 관측 오차가 있을지언정 실제 현상에 대한 정보를 담고 있다. 아래 동영상의 가운데 패널에 오차가 낀 관측자료가 나타내어져 있다.
자료동화에서 filtering이란, 실제 상태의 추정치 \(u_f\)가 있을 때 관측자료 \(y\)에 기반해 추정치를 업데이트 하는 방법이다. 즉, 위 동영상에서 첫번째 패널과 두번째 패널을 합쳐 세번째 패널을 만드는 과정이다.